
International Journal of Economics, Business and Accounting Research (IJEBAR)  

Peer Reviewed – International Journal 

Vol-5, Issue-2, June 2021 (IJEBAR) 

E-ISSN: 2614-1280 P-ISSN 2622-4771 

https://jurnal.stie-aas.ac.id/index.php/IJEBAR  

 

International Journal of Economics, Bussiness and Accounting Research - IJEBAR Page 73 

 

THE FORECASTING OF MONTHLY INFLATION IN MALANG CITY 

USING AN AUTOREGRESSIVE INTEGRATED  

MOVING AVERAGE  
 

Eni Farida
1)

 Mohamad As’ad
 2 * )  

 

STMIK PPKIA Pradnya Paramita Malang, Jl. Laksda Adi Sucipto 249A Blimbing, Malang, Indonesia
1,2

  

E-mail: eni@stimata.ac.id 
1
; asad@stimata.ac.id 

2
* 

* : corresponding author 

  

Abstract:  Malang is known as a student city since there are a lot of schools and universities 

that can be found in Malang Indonesia. Malang is also an attractive tourist place 

with many tourist attractions in the city of Malang. Public transportation in the city 

of Malang is also very varied, ranging from conventional and based online. Access 

to the city of Malang is varied, namely trains, buses, and planes. Thus economic 

growth in the city of Malang is getting better, this can be seen from the economic 

activity in the increasingly crowded city of Malang. A good economy is usually 

followed by stable inflation. For this reason, it is necessary to examine how the 

monthly inflation rate in Malang city. This study aims to forecast inflation in the 

coming periods using the Autoregressive Integrated Moving Average (ARIMA) 

model. Secondary monthly inflation data is obtained from BPS Malang. From this 

research, the ARIMA model (2,0,3) is obtained. The accuracy model is used in this 

research namely root means square error (RMSE), mean absolute error (MAE), and 

mean absolute square error (MASE). The accuracy value is RMSE equal 

0.2645467, MAE equal 0.2013898, and MASE equal 0.6047399. 

 

Keywords:  Monthly inflation forecasting, BPS Malang city, ARIMA model. 

 

 

1. Introduction  

Malang is the second-largest city in East Java after Surabaya. Students crowded activities on 

weekends and weekdays potentially enhance the economic sectors in Malang. According to 

Bawono (2019), the relationship between inflation and economic growth was negative, which 

means that when there was economic growth, inflation did not occur (inflation does not rise or 

stable) and vice versa if there was an economic decline, inflation will rise. The link between 

economic growth and inflation rates also seems to occur in Malang. This economic activity 

shows that the city of Malang was experiencing economic growth. The sectors that influence the 

economic growth (according to the Central Bureau of Statistics or BPS) were food and beverage 

(restaurants, cafes, stalls, malls, retail, etc.), accommodation (hotels, boarding houses, etc.), 

electricity, fuel gas, clothing, health, education, recreation, sports, transportation, and financial 

services. All these sectors affect the level of inflation in the city of Malang. The economy can 
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develop well on which the inflation is not too high or deflation is not so low. According to BPS, 

inflation is defined as the tendency for rising prices of goods and services in general to continue. 

If the price of products and services in the country increases, inflation increases. Rising costs of 

products and services cause a decrease in the value of money. Thus, inflation can be interpreted 

as the decreased value of money towards the cost of products and services (bps).  

Uncontrolled high Inflation causes the declinable power of purchasing. The effect of the 

aforementioned issue is the economic wheels cannot work well. On the other hand, economic 

growth is going to be depressed if inflation is too low or also called deflation. However, stable 

inflation is expected to be achieved, so, the economy can develop properly (Boediono, 2001). 

BPS calculates the inflation rate with the variable consumer price index (CPI). The movement of 

CPI from time to time shows changes in the prices of goods and services consumed by the 

community. The price determination of products and services was done by BPS by surveying the 

cost of living in the city. According to BPS, other inflation indicators based on international best 

prices were wholesale price index (WPI), consumer price indicators (CPI), gross domestic 

product deflator (GDP), and asset price index (API). Inflation was calculated by BPS. 

To predict future inflation, according to the knowledge of researchers, it has never been 

done and published by BPS. The prediction of future inflation also needs to be done to support 

the planning of economic activities that have to do with inflation, whether planned by the 

government or the private sector. From this, it was necessary to predict the inflation for future 

periods with time series statistical models that were suitable for the conditions of data in the 

field. In econometrics, inflation models often contain autoregressive factors and also include 

heteroscedasticity (Gujarati, 2009). According to the aforementioned issues, the researchers 

conduct this study to predict the value of inflation in the next few periods by using a model that 

matches the data in the field. The following models that might be used were Autoregressive 

integrated moving average (ARIMA) model, Autoregressive Conditional Heteroscedasticity 

(ARCH), or a combination of the two models (HYBRID).  

Several studies on inflation prediction have been carried out in several big cities in a country 
or inflation at the country level. Iqbal and Naveed (2016) have researched quarterly inflation 
predictions in Pakistan by using the Autoregressive integrated moving average (ARIMA) model. 
The best model used for forecasting was ARIMA ([4,10], 0,4) which means that inflation is 
influenced by the data of the 4

th
 period, the data of the 10

th
 period, and also the average residual 

four (1-4) periods in the past. This study uses quarterly data from 1970 to 2006. Popoola (2017) 
researched to predict the inflation in Nigeria by using the ARIMA model. The results obtained 
by the best ARIMA model was ARIMA (0,1,1). It means that the data was not stationary and 
was stationary by doing differencing. After differencing, the moving average (MA) model was 
conducted for a period. The data used were monthly inflation data in Nigeria from January 2006 
to December 2015. The other researchers used the ARIMA model was also carried out by 
Abdulrahman (2018) to predict annual inflation that occurred in Sudan. The data used for 
ARIMA modeling was taken from yearly inflation data from 1970-2018. The results of this study 
were the ARIMA model (1,2,1) which was used to predict the annual inflation rate from 2017-
2026. ARIMA (1,2,1) means that the data used was not stationary so that it was done 
differencing with lag 2. Then, the data was modeled into ARIMA (1,0,1) in other words the 
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current data (data that has been differentiated) depends on the data one the previous period and 
the moving average of the previous period. From the three aforementioned studies, it can be seen 
that the inflation data used did not contain heteroscedasticity or the three ARIMA models above, 
the error had a white noise condition.  

Besides the ARIMA model, other researchers want to compare Holt's exponential smoothing 

model. This study used monthly inflation data in Zambia from May 2010 to May 2014. The 

results of this study were the ARIMA model ([12], 1,0) that best matches the data analyzed. This 

study showed that inflation data did not contain volatility, so the model did not contain 

heteroscedasticity (Jere & Sianga, 2016). Another study that used the ARIMA model in 

combination with General Autoregressive Conditional Heteroscedasticity (GARCH) was 

Uwilingiyimana et al. (2016). These researchers predicted inflation rates in Kenya with monthly 

inflation data taken from 2000 to 2014. The combination of the ARIMA-GARCH model was a 

hybrid model. From the research results obtained by ARIMA (1,1,12) and GARCH (1,2). 

Inflation data in this study was the ARIMA model and the residual was a GARCH model. Other 

researchers who used the GARCH and ARIMA models were Osarumwense and Waziri (2016). 

This researcher performed monthly inflation forecasting in Nigeria. This study used monthly 

inflation data from January 1995 to December 2011. The final results of this study got the 

GARCH (1,0) and ARIMA (1,0,0) models. Furthermore, this model was made to predict 

inflation data that will occur from January 2012 to December 2013. 

2. Research Method 

In this study, we have used a time series forecasting model that was suitable for the conditions of 

the field data and which had a high accuracy value. To choose which model that can be used in 

stages of scientific analysis as had been done by other researchers. Data plots would be 

conducted to find out whether the data was stationary or not, as done by Iqbal and Naveed 

(2016), Popoola (2017), Abdulrahman (2018), Jere & Sianga (2016), Uw Surroundyimana 

(2016), and Osarumwense and Waziri (2016). The next stage will be plotted by using 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF). From this initial 

identification, the monthly inflation data of Malang city has an autoregressive (AR) model only 

or contains (AR) and heteroscedasticity can be estimated.  

This research aims to predict the monthly inflation in Malang for several periods in the 

future. Inflation data is secondary data obtained from the Central Bureau of Statistics (BPS) of 

Malang City. The data used in this research is monthly inflation from January 2015 to June 2019. 

Before performed data analysis, it is plotted to graphically show whether the data contains trend, 

seasonal, trend, and seasonal elements or contains volatility. If it seems to include a trend 

element, a data stationarity test is performed with the Dicky Fuller Test. If the data includes the 

trend is not stationary, the differencing process will be carried out. If it does not contain 

directions or stationary, it will be identified earlier. Initial identification by plotting ACF and 

PACF. ACF to determine the demand of the MA model, and PACF to determine the order of the 

AR, (Wei, 2006). 

After the AR (p) and MA (q), orders are obtained, the next step is to estimate the ARMA 

model parameters (p, q). At this stage, the ARMA model coefficient test (p, q) is performed with 
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the t-test. If the parameters tested are not significant, then the model is changed so that all the 

coefficients are significant (As'ad, 2012). 

The next step after all significant model coefficients is to test the error of the model must be 

white noise. The model error is white noise, which means the fault is not autocorrelated and is 

normally distributed. To check the non-autocorrelation error, the Ljung Box test is used, whereas 

to check for normality it uses the Shapiro-Wilk test. If one of the requirements cannot be 

reached, the error is not white noise. One of the ways to overcome the incident is by analyzing 

whether the error might occur heteroskedasticity or also not stationary variance. If 

heteroscedasticity occurs, it can be modeled again with the ARCH or GARCH models. If the 

variance is not stationary, data must be transformed by Box-Cox. After the transformation of 

Box-Cox and the data are stationary in the variance, the next step is using the ARIMA model 

(Dritsaki, 2018). 

After testing the white noise condition of the residual for the ARIMA model, the next step is 

to choose the best ARIMA model. According to Wei (2006), to select the best ARIMA model by 

looking at the lowest Akaike Information Criteria (AIC) value. In addition to the minimum AIC 

amount, the best ARIMA model is also seen from the lowest amount of the accuracy for the 

model, including; root mean square error (RMSE), mean absolute error (MAE), and mean 

absolute square error (MASE). The best ARIMA models use the parsimony principle. The 

principle of parsimony is essentially choosing a simple model. Based on the three 

determinations, the best ARIMA model can be selected. 

In the ARIMA model, the residual is not white noise caused by autocorrelation or 

heteroscedasticity. Residual from such ARIMA models must be done by using ARCH or 

GARCH models. To test the heteroscedasticity effects, a squared residual test with the Lagrange 

Multiplier test or the ARCH-LM Test (Bollerslev, 1994) is performed. If there is an ARCH or 

GARCH effect on the residuals, then the ARCH or GARCH models are performed. Furthermore, 

from the best ARIMA models and ARCH / GARCH models, they are combined into Hybrid 

models (Dritsaki, 2018). 

3. Results and Discussion 
This research uses secondary monthly inflation data obtained from BPS Malang. The data used 
was monthly inflation from January 2015 to June 2019. Furthermore, the data is plotted to find a 
picture of the data (figure 1). 
 

 
Figure 1.  

The plot of monthly inflation data for the Malang city 
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At first glance from Figure 1 does not indicate a trend. A database test is performed by using the 
Dicky Fuller test to ensure that the result is correct. The test results are as follows (tabel 1) : 

Tabel 1. 

Augmented Dickey-Fuller (ADF) Test 

Lag no drift no trend with drift no trend with drift and trend 

ADF         p-value ADF        p-value ADF        p-value 

1 0 -3.99       0.0100 0 -5.45         0.01 0 -5.37        0.01 

2 1 -3.54       0.0100 1 -5.94         0.01 1 -5.84        0.01 

3 2 -3.23       0.0100 2 -6.32         0.01 2 -6.24        0.01 

4 3 -1.99       0.0466 3 -4.36         0.01 3 -4.31        0.01 

Note: in fact, p.value = 0.01 means p.value <= 0.01 

 

The p-value <= 0.01 when compared to  (5% = 0.05) is smaller, that means accept H1 

(stationary data). Furthermore, plotting ACF and PACF are done in this test. The results are in 

figure 2 and figure 3 as follows: 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  

ACF plot of monthly inflation data in Malang 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  

PACF plot of monthly inflation data in Malang 
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The tentative model from the ACF and PACF plots is ARIMA (3,0,3). The results of the 
parameter estimation for ARIMA (3,0,3) are in table 3 and table 4 as follows:  
 

Tabel 3.  

Parameter Estimation for ARIMA (3,0,3) 

Call: arima(x = dataar, order = c(3, 0, 3)) 

Coefficients: 

          ar1                   ar2                  ar3               ma1                   ma2                ma3             

intercept 

        -0.1516           0.4664          -0.1957           0.3489            -0.8207              -0.5282           

0.2752 

s.e.    0.2887           0.1555           0.2782           0.3044             0.1281                0.3364           

0.0074 

sigma^2 estimated as 0.07842:  log likelihood = -9.74,  aic = 35.49 

The results of the t-test (it was approached with the Z test) are as follows: 

 

Tabel 4. 

Z-test Parameter for ARIMA (3,0,3) 

z test of coefficients: 

                                         Estimate              Std. Error           z value                 Pr(>|z|)     

          ar1                       -0.1515762            0.2887106          -0.5250               0.599576     

          ar2                        0.4663857            0.1554602            3.0000               0.002699 **  

          ar3                       -0.1956526            0.2782382          -0.7032               0.481941     

          ma1                      0.3489444            0.3043750            1.1464               0.251618     

          ma2                     -0.8207154            0.1280930           -6.4072              1.482e-10 *** 

          ma3                     -0.5282278            0.3363554           -1.5704              0.116312     

          intercept               0.2752124            0.0073885           37.2489               < 2.2e-16 *** 

          --- 

          Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
It appears that ar3 is not significant (0.481941> 0.05 (α)) which means this model is not suitable. 

Then ar3 is eliminated and the model becomes ARIMA (2,0,3). The results of the parameter 

estimation for ARIMA (2,0,3) are in table 5 and table 6 as follows: 

Tabel 5. 

Parameter Estimation for ARIMA (2,0,3) 

Call: arima(x = dataar, order = c(2, 0, 3)) 

Coefficients: 

          ar1                      ar2                       ma1                         ma2                       ma3                  

intercept 

          -0.4112               0.3731                 0.7608                    -0.7608                  -0.9999             
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0.2749 

  s.e.   0.1313                0.1360                 0.1113                     0.1018                   0.1195              

0.0076 

 

   sigma^2 estimated as 0.06998:  log likelihood = -9.26,  aic = 32.52 

 
The results of the t-test (it was approached with the Z test) are as follows: 

 

Tabel 6. 

Z-test Parameter for ARIMA (2,0,3) 

z test of coefficients: 

                                 Estimate                Std. Error                 z value                 Pr(>|z|)     

             ar1              -0.411174               0.131305                -3.1314                  0.001740 **  

             ar2               0.373115               0.135996                  2.7436                  0.006077 **  

            ma1              0.760847               0.111334                  6.8339                  8.264e-12 *** 

             ma2             -0.760846              0.101832                 -7.4716                 7.923e-14 *** 

             ma3             -0.999897              0.119490                 -8.3681                 < 2.2e-16 *** 

             intercept       0.274948              0.007628                 36.0448                 < 2.2e-16 *** 

              --- 

             Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 
It appears that the parameters ar1, ar2, ma1, ma2, ma3, and the intercept are all significant (there 
are asterisks or p-values <0.05). Then, the data is compared by using the ARIMA model (2,0,2). 
The results are in table 7 and table 8 as follows:  
 

Tabel 7. 

Parameter Estimation for ARIMA (2,0,2) 

Call: arima(x = dataar, order = c(2, 0, 2)) 

Coefficients: 

                           ar1                    ar2                   ma1                   ma2                    intercept 

                         0.9082                -0.8413              -0.7061              0.5560                 0.2718 

            s.e.       0.1386                  0.1381               0.2395              0.2348                 0.0390 

 

            sigma^2 estimated as 0.09631:  log likelihood = -13.78,  aic = 39.56 

 
Next test the coefficient significance: 

Tabel 8. 

Z-test Parameter for ARIMA (2,0,2) 

z test of coefficients: 

                          Estimate                 Std. Error                 z value                  Pr(>|z|)     

ar1                     0.908191                0.138590                  6.5531               5.637e-11 *** 

ar2                    -0.841282                0.138084                 -6.0926              1.111e-09 *** 
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ma1                  -0.706146                0.239509                 -2.9483              0.003195 **  

ma2                   0.556004                0.234760                  2.3684               0.017866 *   

intercept           0.271843                 0.038952                  6.9790               2.973e-12 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
It appears that the parameters ar1, ar2, ma1, ma2, and intercept are all significant (there are 

asterisks or p-values <0.05). 

The ARIMA (2,0,3) and ARIMA (2,0,2) models all have significant parameters, but, the 
researcher will take the best model. The selection of the best model based on the Akaike 
Information Criteria (AIC) in table 3. Table 5, Table 7, obtained the best ARIMA model (2,0,3) 
because it has the smallest AIC value (32.52 <35.49 <39.56). In addition to the AIC value for 
selecting the best ARIMA model, forecasting accuracy values such as; RMSE, MAE, and MASE 
are used. Comparison of accuracy values can be seen in the following table 9: 
 

Tabel 9.  

The accuracy value of the three ARIMA models 

Model / accuracy                       RMSE                         MAE                               MASE 

ARIMA(3,0,3)                        0.2800393                   0.2023801                        0.6077137 

ARIMA(2,0,3)                        0.2645467                   0.2013898                        0.6047399 

ARIMA(2,0,2)                        0.3103419                   0.233071                          0.6998733 

 
By comparing the AIC value, forecasting accuracy, and also the parsimony model in selecting 

the best model is ARIMA (2,0,3). 

Next will be examined the assumption of white noise from the residual of the ARIMA model 
(2,0,3). 
The first is the assumption of autocorrelation. With the Ljung-Box test the rest of the ARIMA 
models (2,0,3) are obtained in table 10 as follows: 
 

Tabel 10. 

Ljung-Box test for residual of the ARIMA model (2,0,3). 

       Box-Ljung test data:  residuals(model1) 

X-squared = 8.2006,      df = 12,           p-value = 0.7693 

 

Chi-square value with the Ljung-Box test of 8,2006 with a lag of 12 obtained a p-value of 0.7693 

> 0.05  which means that the residual is random or random without autocorrelation. 

Then the second residual assumption test is the residual normality test with the Shapiro-Wilk test. 
The results are in table 11 as follows: 

Tabel 11. 

Shapiro-Wilk test for residual of the ARIMA model (2,0,3). 

    Shapiro-Wilk normality test :  residuals(model1) 

    W = 0.98006,               p-value = 0.5029 
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The Shapiro Wilk test statistic value of 0.98006 with p-value = 0.5029> 

H0 test data is normally distributed. With this model residual test, the white noise traits are 

fulfilled; they are free autocorrelation and normal distribution. Thus the best model for 

forecasting monthly inflation in Malang in this study is ARIMA (2,0,3). 

Such econometric models usually contain high volatility, or the remainder of the model is 

still heteroscedasticity, for this reason, the ARCH / GARCH effect test will be performed both 

on monthly inflation data and on the ARIMA (2,0,3) model residual data. This test uses the 

Lagrange Multiplier test or the ARCH-LM Test. 

In the monthly inflation data (dataar) test for the ARCH / GARCH model, the ARCH LM-test 
results are obtained in table 12 as follows: 

Tabel 12. 

ARCH LM-test for data Monthly Inflation  

          ARCH LM-test; Null hypothesis: no ARCH effects 

           data:  dataar 

    Chi-squared = 9.5414,        df = 12,       p-value = 0.6561 

 
From the ARCH LM-test results for monthly inflation data, the Chi-Squared value = 9.5414 with 
a p-value of 0.6561 (P-value> α or 0.6561> 0.05), which means that H0 is accepted (the data does 
not contain the ARCH model). Whereas in the residual of the ARIMA model (2.0,3) data test for 
the ARCH / GARCH effect, the ARCH LM-test results are obtained in table 13 as follows: 

Tabel 13. 

ARCH LM-test for data residual of the ARIMA  (2,0,3) model. 

            ARCH LM-test; Null hypothesis: no ARCH effects 

            data:  residuals(model1) 

    Chi-squared = 9.6425,        df = 12,         p-value = 0.6473 

 
The ARCH LM-test results for the residual of the ARIMA model (2,0,3) obtained Chi-Squared 
value = 9.6425 with a p-value of 0.6473 (P-value > α or 0.6473 > 0.05), this means that H0 (the 
rest does not contain effects ARCH). From the series of tests above, the best model for predicting 
monthly inflation in Malang is the ARIMA model (2,0,3). The data plot of the inflation month 
and forecast results from January 2015 to June 2019 are in figure 4 as follows: 

 
 
 
 
 
 
 
 
 

Figure 4. 

Plots of monthly inflation data and forecast results 
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Furthermore, the next three months' forecasting period for July, August, and September 2019 can 
be seen in table 14. 

Table 14. 

Inflation forecast for July-September 2019 

Month                     July               August                     September 

Forecasting    -0.007629137     0.317746401           0.559477606 

 
From the ARIMA model (2,0,3) it can be interpreted that inflation occurring in the current 

month is determined by inflation last month and also two months ago and then added a moving 
average from the residual of the autoregressive model three periods ago (MA (3)). From table 13 
we can read the inflation forecast value that occurred in July amounted to -0.007629137, which 
slightly increased from June inflation of -0.17. In August there was an increase in inflation which 
reached point 0.317746401, this was possible because it coincided with the Idul Adha holiday and 
the commemoration of Augustus. In September, there is an increase in inflation at the point 
0.559477606. If seen from the historical graph in Figure 4, the possibility of inflation in 
September is the peak and will experience deflation in the following month. To find out the 
inflation in October, the researchers do a remodel by adding the latest data in July and also 
August. This remodeling is considered a significant action since the latest data can provide even 
more accurate information in building models for forecasting in the next one or two months. 
 

4. Conclusion 

From this study, it can be concluded that the best ARIMA model for predicting monthly inflation 

in Malang is ARIMA (2,0,3). The ARIMA model (2,0,3) means that the current month inflation 

in Malang is influenced by the two past monthly inflation periods. It is also influenced by the 

moving average error (the difference between the actual data and its forecast value) three periods 

ago. Accuracy of forecasting ARIMA (2,0,3) model for root means square error (RMSE) is 
0.2645467, mean absolute error (MAE) is 0.2013898 and mean absolute square error (MASE) is 

0.6047399. To maintain the accuracy of forecasting, the latest data should be inputted so that the 

model becomes renewable and also forecasting the future period is not too long, maybe one to 

three periods only. The forecast value for the next three periods from July to September seems to 

be inflation, so this prediction needs to be considered as one of the references in planning for the 

next three months that has to do with inflation in the city of Malang. 
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