THE FORECASTING OF MONTHLY INFLATION IN YOGYAKARTA CITY USES AN EXPONENTIAL SMOOTHING-STATE SPACE MODEL

Hari Prapcoyo, Mohamad As'ad

Abstract

Abstract:
Yogyakarta is known as a student city, tourist city, and also a city of culture. Yogyakarta is an interesting tourist and cultural place with many beautiful tourist attractions in the city of Yogyakarta. Public transportation in the city of Yogyakarta is also varied, ranging from conventional and online-based. Access to the city of Yogyakarta varies, namely trains, buses, and planes. Thus, the economic growth in the city of Yogyakarta is getting better, this can be seen from the economic activity in the city of Yogyakarta which is getting busier. A good economy is usually always followed by stable inflation. This study aims to predict inflation in the future period using the Exponential Smoothing-State Space (ETS) model. Secondary monthly inflation data was obtained from BPS Yogyakarta City. From this research, the Exponential Smoothing-State Space Model / ETS (A, N, A) is obtained, which means that the monthly inflation data for the city of Yogyakarta does not contain trends, but contains additive seasonality and has additive errors. The results of this study indicate that inflation in the next three months is relatively stable, namely, the decline in inflation and the increase in inflation is still below 10%.
Keywords: BPS Yogyakarta City, Monthly Inflation Forecasting, Exponential Smoothing-State Space ETS

Full Text:

PDF

References

References

Armi, A.E., Kridalaksana, A.H. dan Arifin, Z, (2019), Peramalan Angka Inflasi Kota Samarinda Menggunakan Metode Double Exponential Smoothing (Studi Kasus : Badan Pusat Statistik Kota Samarinda), Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, vol 14. No.1 p.21-26. http://dx.doi.org/10.30872/jim.v14i1.1252

As’ad, M. and Farida, E., (2019), Implementasi Jaringan Syaraf Tiruan untuk Memprediksi Inflasi Bulanan di Kota Malang, Jurnal Ilmiah KOMPUTASI vol. 18 no. 2 p. 101-106. http://dx.doi.org/10.32409/jikstik.18.2.2570

As’ad, M., Sujito, Setyowibowo, S., (2020), Prediction of Daily Gold Prices Using an Autoregressive Neural Network, Inform: Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi, vol.5 no. 2 p.69-73. DOI: http://dx.doi.org/10.25139/inform.v0i1.2715

Fahruddin, R. dan Sumitro I.D., (2020), Peramalan Inflasi Menggunakan Metode SARIMA Dan Single Exponential Smoothing (Studi Kasus: Kota Bandung), Majalah Ilmiah UNIKOM, Vol.17 no.2 https://doi.org/10.34010/miu.v17i2.3180

Farida, E., As’ad, M., (2021), The Forecasting of Monthly Inflation in Malang City Using An Autoregressive Integrated Moving Average, International Journal of Economics, Business and Accounting Research (IJEBAR), vol. 5 no. 2. p. 73-83. http://dx.doi.org/10.29040/ijebar.v5i2.2328

Febriyanti, S., Pradana, W. A., Saputra, M. J., & Widodo, E. (2021). Forecasting the Consumer Price Index in Yogyakarta by Using the Double Exponential Smoothing Method. Parameter: Journal of Statistics, 2(1), 1-7. DOI: https://doi.org/10.22487/27765660.2021.v2.i1.15641

Fitri, A., Anwar, S., Zohra, A.S. dan Nasution, M.H., (2018), Peramalan Laju Inflasi Bulanan Kota Padang Menggunakan Metode Triple Exponential Smoothing, Jurnal Ilmiah Sosio Ekonomika Bisnis : JISEB, vol.21 no. 2, p.1-10.

https://jogjakota.bps.go.id/indicator/3/1/1/inflasi.html. Accessed on 11 January 2022

https://peraturan.bpk.go.id/Home/Download/46875/Keppres%20No%2023%20Tahun%202017.pdf, Keppres no 23 tahun 2017, Accessed on 31 January 2022.

https://www.bps.go.id/subject/3/inflasi.html. Accessed on 11 January 2022

Hyndman, R.J. and Athanasopoulos, G., (2018), “Forecasting: principles and practice”, 2nd edition, OTexts: Melbourne, Australia.

Ningsih, S., & Kristiyanti, L. M. S. (2019). Analisis pengaruh jumlah uang beredar, suku bunga dan nilai tukar terhadap inflasi di Indonesia periode 2014-2016. Jurnal Manajemen Dayasaing, 20(2), 96-103.

Jere, S. and Siyanga, M. (2016) Forecasting Inflation Rate of Zambia Using Holt’s Exponential Smoothing. “Open Journal of Statistics”, 6, 363-372. http://dx.doi.org/10.4236/ojs.2016.62031

Jofipasi, C.A., Mitahuddin and Hizir, (2017), Selection for the best ETS (error, trend, seasonal) model to forecast weather in the Aceh Besar District, IOP Conf. Series: Materials Science and Enginering, 7th, IO Publising. doi:10.1088/1757-899X/352/1/012055

Ningsih, S., & Kristiyanti, L. M. S. (2019). Analisis pengaruh jumlah uang beredar, suku bunga dan nilai tukar terhadap inflasi di Indonesia periode 2014-2016. Jurnal Manajemen Dayasaing, 20(2), 96-103.

Makridakis, S., Wheelwright, S.C, & R.J. Hyndman, R.J., (1998), Forecasting: Methods and Applications, John Wiley & Sons, Inc.

Simunangkalit, E.F.B., (2020), Pengaruh Inflasi Terhadap Pertumbuhan Ekonomi Di Indonesia, / Journal of Management (SME’s), vol. 13 no.3 p.327-340. https://doi.org/10.35508/jom.v13i3.3311

Sudibyo, N.A., Iswardani, A., Septianto, A. W. dan Wicaksono, T.G., (2020), Lebesgue: Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, vol. 1 no. 2. https://doi.org/10.46306/lb.v1i2.25

Utari, G.A.D., Cristina, R.S. dan Pambudi S, (2016), Inflasi di Indonesia: Karakteristik dan Pengendaliannya, BI Institute, Jakarta

Refbacks

  • There are currently no refbacks.