PREDIKSI MASA STUDI MAHASISWA MENGGUNAKAN ALGORITMA NAÏVE BAYES PADA UNIVERSITAS HALMAHERA

Agustinus A Botara, Ahmad Sabri

Abstract


Student graduation is an important aspect of accreditation at a university. One of the problems of concern is that the number of new students is not balanced with the number of graduates (graduating on time) the problem can lead to potential dropouts. From these problems it is necessary to conduct an analysis to predict the study period at Halmahera University. The main objective of this research is to predict student study period using Naïve Bayes algorithm, by utilising student graduation data from 2014-2017. The approach used involves the stages of data selection, data preprocessing, analytical processing, and output, with evaluation of prediction results using confusion matrix. Prediction of study period is done by data mining method and using Naïve Bayes algorithm to find patterns (knowledge). The data used is student graduation data in 2014-2017 with a total of 1,157 records, the data is divided into 926 records for training data (80%) and 231 records as testing data (20%). The prediction results show the accuracy rate of the Naïve Bayes Algorithm is 82.9%.

Full Text:

PDF

References


Aggarwal, C. C. (2015). Data mining: the textbook (Vol. 1). Springer.

Ahmed, R. M., Omran, N. F., & Ali, A. A. (2018). Predicting and analysis of students’ academic performance using data mining techniques. International Journal of Computer Applications, 181(48), 36–43.

Asril, T., & Isa, S. M. (2020). Prediction of students study period using K-Nearest Neighbor algorithm. International Journal, 8(6).

Azahari, A., Yulindawati, Y., Rosita, D., & Mallala, S. (2020). Komparasi Data Mining Naive Bayes dan Neural Network memprediksi Masa Studi Mahasiswa S1. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(3), 443–452.

Bustami, B. (2013). Penerapan algoritma Naive Bayes untuk mengklasifikasi data nasabah asuransi. TECHSI-Jurnal Teknik Informatika, 5(2).

Etriyanti, E., Syamsuar, D., & Kunang, N. (2020). Implementasi Data Mining Menggunakan Algoritme Naive Bayes Classifier dan C4. 5 untuk Memprediksi Kelulusan Mahasiswa. Telematika, 13(1), 56–67.

Hendra, H., Azis, M. A., & Suhardjono, S. (2020). Analisis Prediksi Kelulusan Mahasiswa Menggunakan Decission Tree Berbasis Particle Swarm Optimization. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 9(1), 102–107.

Hofmann, M., & Klinkenberg, R. (2016). RapidMiner: Data mining use cases and business analytics applications. CRC Press.

Jananto, A., Sulastri, S., Wahyudi, E. N., & Sunardi, S. (2021). Data Induk Mahasiswa sebagai Prediktor Ketepatan Waktu Lulus Menggunakan Algoritma CART Klasifikasi Data Mining. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 10(1), 71–78.

Larose, D. T. (2015). Data mining and predictive analytics. John Wiley & Sons.

Peling, I. B. A., Arnawan, I. N., Arthawan, I. P. A., & Janardana, I. G. N. (2017). Implementation of Data Mining To Predict Period of Students Study Using Naive Bayes Algorithm. Int. J. Eng. Emerg. Technol, 2(1), 53.

Rosandy, T. (2016). Perbandingan Metode Naive Bayes Classifier Dengan Metode Decision Tree (C4. 5) Untuk Menganalisa Kelancaran Pembiayaan (Study Kasus: KSPPS/BMT Al-Fadhila. Jurnal Teknologi Informasi Magister, 2(01), 52–62.

Sumathi, S., & Sivanandam, S. N. (2006). Introduction to data mining and its applications (Vol. 29). Springer.

Supriyanto, A., Maryono, D., & Liantoni, F. (2020). Predicted student study period with C4. 5 data mining algorithm. IJIE (Indonesian Journal of Informatics Education), 4(2), 94–100.

Yulianto, L. D., Triayudi, A., & Sholihati, I. D. (2020). Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4.5. Jurnal Mantik, 4(1), 441–451.

Yunita, Y., Puspita, A., & Lestari, A. F. (2020). Student Performance Analysis Using C4. 5 Algorithm To Optimize Selection. Jurnal Pilar Nusa Mandiri, 16(2), 149–154.




DOI: http://dx.doi.org/10.29040/jie.v8i2.12978

Refbacks

  • There are currently no refbacks.