Prediksi Kelancaran Piutang Pelanggan pada PT. Citra Ina Feedmill dengan Menggunakan Algoritma Naïve Bayes dan K-Nearest Neighbors

Authors

  • Auki Akbar Magister Teknologi dan Rekayasa - Magister Manajemen Sistem Informasi Universitas Gunadarma, Indonesia
  • Riza Adrianti Supono Magister Teknologi dan Rekayasa - Magister Manajemen Sistem Informasi Universitas Gunadarma, Indonesia

DOI:

https://doi.org/10.29040/jie.v6i1.4692

Abstract

Giving credit to customers is a solution that is often done by business actors today, such as companies. By offering credit solutions, companies can attract potential customers and make it easier for customers to make payments. However, being able to provide credit to customers can cause losses for the company when customers are unable to pay their periodic credits. For this reason, in this study an analysis was carried out to categorize customer payment capabilities using the Naïve Bayes Algorithm and the K-Nearest Neighbors Algorithm. The results of the study, obtained the best data mining model to predict the age classification of customer receivables using the KNN algorithm which is optimized with a feature selection algorithm with an accuracy of 99%. Keywords: algorithm, data mining, KNN, Naïve Bayes, customer receivables

Author Biography

Auki Akbar, Magister Teknologi dan Rekayasa - Magister Manajemen Sistem Informasi Universitas Gunadarma

Magister Teknologi dan Rekayasa - Magister Manajemen Sistem Informasi Universitas Gunadarma

References

Agarwal, S. (2014). Data mining: Data mining concepts and techniques. In Proceedings - 2013 International Conference on Machine Intelligence Research and Advancement, ICMIRA 2013. https://doi.org/10.1109/ICMIRA.2013.45

Berrar, D. (2018). Bayes’ theorem and naive bayes classifier. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1–3(2018), 403–412. https://doi.org/10.1016/B978-0-12-809633-8.20473-1

Buckland, M., & Gey, F. (1994). The relationship between Recall and Precision. Journal of the American Society for Information Science, 45(1), 12–19. https://doi.org/10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L

Fayyad, U. (1997). Data mining and knowledge discovery in databases: Implications for scientific databases. Scientific and Statistical Database Management - Proceedings of the International Working Conference, 2–11. https://doi.org/10.1109/ssdm.1997.621141

Gultom, F., & Simanjuntak, T. (2020). Prediksi Tingkat Kelancaran Pembayaran Kredit Bank Dengan Menggunakan Algoritma Naïve Bayes Dan K-Nearest Neighbor. METHOMIKA: Jurnal Manajemen Informatika Dan Komputerisasi Akuntansi, 4(1), 98–102. https://doi.org/10.46880/jmika.v4i2.158

Hasan, M. (2017). Prediksi Tingkat Kelancaran Pembayaran Kredit Bank Menggunakan Algoritma Naïve Bayes Berbasis Forward Selection. ILKOM Jurnal Ilmiah, 9(3), 317–324. https://doi.org/10.33096/ilkom.v9i3.163.317-324

Kramer, O. (2013). Dimensionality Reduction with Unsupervised Nearest Neighbors. Intelligent Systems Reference Library, 51, 13–23. https://doi.org/10.1007/978-3-642-38652-7

Mabayoje, M. A., Balogun, A. O., Jibril, H. A., Atoyebi, J. O., Mojeed, H. A., & Adeyemo, V. E. (2019). Parameter tuning in KNN for software defect prediction: an empirical analysis. Jurnal Teknologi Dan Sistem Komputer, 7(4), 121–126. https://doi.org/10.14710/jtsiskom.7.4.2019.121-126

Mardiana, T. (2018). Optimasi Naïve Bayes Dengan Particle Swarm Optimization Dan Stratified Untuk Prediksi Kredit Macet Pada Koperasi. Jurnal Riset Informatika, 1(1), 43–50. https://doi.org/10.34288/jri.v1i1.13

Downloads

Published

2022-02-28

How to Cite

Akbar, A., & Supono, R. A. (2022). Prediksi Kelancaran Piutang Pelanggan pada PT. Citra Ina Feedmill dengan Menggunakan Algoritma Naïve Bayes dan K-Nearest Neighbors. JURNAL ILMIAH EDUNOMIKA, 6(1), 558–567. https://doi.org/10.29040/jie.v6i1.4692

Citation Check