Analyzing National Zakat Trends: Holt–Winters–Based Forecasting to Support BAZNAS Strategic Planning
DOI:
https://doi.org/10.29040/jiei.v11i06.18611Keywords:
Keywords: exponential smoothing, forecasting, multiplicative Holt–Winters, seasonalAbstract
Abstract
The National Amil Zakat Agency (BAZNAS) is a non-structural government institution mandated to collect, manage, and distribute zakat at the national level in a professional and accountable manner. As the state authority for zakat, BAZNAS plays a strategic role in ensuring the sustainability of welfare programs, making the ability to accurately forecast zakat revenue essential for planning and decision-making. This study analyzes historical patterns and forecasts the zakat revenue of BAZNAS Central for the period 2017–2025 using the multiplicative Holt–Winters method. The data indicate a consistent upward trend and strong seasonal patterns, particularly during religious periods such as Ramadan. The analysis involves identifying level, trend, and seasonal components, followed by estimating smoothing parameters and the damping factor. Two models, additive and multiplicative, were compared using AIC, AICc, and BIC, and the results show that the multiplicative model performs best. Accuracy evaluation using MSE, RMSE, and MAPE confirms that this model produces predictions that closely match the actual values. The 12-month forecast displays consistent seasonal fluctuations, with the peak of zakat collection predicted to occur in March 2026. These findings highlight the importance of incorporating seasonal time-series approaches to support strategic planning and enhance the effectiveness of national zakat management.
References
Badan Amil Zakat Nasional (BAZNAS). (2024). Outlook Zakat Nasional 2024. BAZNAS RI.
KNEKS. (2023). Laporan Tahunan Keuangan Syariah Indonesia. Komite Nasional Ekonomi dan Keuangan Syariah.
Undang-Undang Republik Indonesia Nomor 23 Tahun 2011 tentang Pengelolaan Zakat.
Ishak, I. S., & Jaapar, A. (2020). Forecasting zakat collection using Holt–Winters and ARIMA models. Journal of Islamic Accounting and Business Research, 11(4), 785–802.
Lima, F., Lopes, H., & Pereira, C. (2023). Seasonal time series forecasting using exponential smoothing methods. Applied Economics Letters, 30(4), 351–359.
Pleños, K. G. (2022). Time series forecasting using improved exponential smoothing: A comparative study. International Journal of Forecasting and Data Science, 7(2), 55–68.
Pisol, M., & Harun, F. (2023). Comparing ARIMA and Holt-Winters for Islamic financial forecasting. Journal of Islamic Finance, 12(1), 44–58.
Malihah, S., Rahayu, N., & Rahma, A. (2022). Forecasting analysis of ZIS collection in Banjar Regency using Double Exponential Smoothing method. Jurnal Teknik Informatika, 9(2), 166–174.
Sari, D., Putra, A., & Lestari, F. (2024). Peramalan penerimaan zakat menggunakan metode Holt–Winters di BAZNAS Kabupaten Bandung. Jurnal Ekonomi Syariah Indonesia, 6(1), 45–60.
Nuha, R., Fadillah, A., & Zain, M. (2022). Analisis deret waktu pada penerimaan ZIS menggunakan ARIMA dan Holt. Jurnal Statistika dan Aplikasi, 8(3), 221–230.
BAZNAS PPID. (2025). Laporan Keuangan Bulanan BAZNAS 2017–2025. https://baznas.go.id/ppid
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice (2nd ed.). OTexts. https://otexts.com/fpp3/
Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (1998). Forecasting: Methods and Applications (3rd ed.). John Wiley & Sons.
Published
How to Cite
Issue
Section
Citation Check
License
The copyright of the article fully belongs to the Jurnal Ilmiah Ekonomi Islam and publishing rights belong entirely to LPPM STIE AAS Surakarta

This work is licensed under a Creative Commons Attribution 4.0 International License.



